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Abstract. Direction and strength effects of a magnetic field on the ground-state tunnel splitting
for a biaxial spin molecule with the model Hamiltonian H = k1S

2
z +k2S

2
y −gµBHzSz −gµBHySy

have been investigated within a continuous-spin approach including the Wess–Zumino–Berry term.
The topological oscillation and the non-Kramers freezing indicated in the approach are in agree-
ment with those observed in a recent experiment on Fe8 molecular nanomagnets. The behaviour
of tunnel splitting with multiple orbits induced by strong fields has been revealed clearly.

Now that crystals formed by identical magnetic molecules, such as Mn12 acetate [1] and an
octanuclear iron cluster Fe8 [2], which have a well-defined structure with a well-characterized
spin ground state and magnetic anisotropy, can be fabricated, it has become possible to study
macroscopic quantum tunnelling and its topological effect for high-spin molecules; these have
attracted considerable interest, from both theoreticians and experimentalists [3, 4]. An Fe8

cluster in a magnetic field H = (0, Hy,Hz) can be described by the biaxial spin Hamiltonian

H = k1S
2
z + k2S

2
y − gµBHzSz − gµBHySy (1)

where µB is the Bohr magneton, and g = 2, S = 10, k1 ≈ 0.321 K and k2 ≈ 0.229 K, which
have been confirmed by EPR [2] and neutron scattering [5] data and macroscopic magnetic
measurements [6, 7].

The tunnel splitting  of the ground state for the model of equation (1) with Hy = 0 has
been studied theoretically [8–10]. An interesting topological effect, i.e., oscillation of  as
Hz changes, has been discovered for Hz < HG where HG = (1 − λ)1/2Ha with λ = k2/k1

and Ha = 2k1S/gµB [8]. The tunnelling is quenched at a certain Hz [6, 8], and the freezing
need not be related to Kramers’ degeneracy. Very recently, the disappearance of the oscillation
and freezing in the region where Hz > HG has been demonstrated [11], and further clarified
[12] in different approaches. What is the situation if H is away from the hard-magnetization
z-axis? How are the oscillation and freezing related to the direction and strength of H?
What is the condition under which the oscillation disappears? To provide answers to these
questions, the characteristic of the tunnel splitting for the biaxial spin molecule of equation (1)
in a magnetic field with both Hy �= 0 and Hz �= 0 is investigated within a continuous-spin
approach including the Wess–Zumino–Berry term in this article. The behaviour of the tunnel
splitting with multiple orbits induced by strong fields in the region where H 2

z − H 2
y /λ > H 2

G

has been clearly revealed.
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In the instanton method, the tunnel splitting  is given by

 =
∣∣∣∣∣
∑
k

ωke−Sk

∣∣∣∣∣ (2)

where ωk is a quantity with dimensions of frequency or energy, and Sk = Skr + iSki is the
classical action that can be obtained from the Euclidean action along a semiclassical path, or
instanton, connecting the two states between which the tunnelling is occurring. The sum runs
over all possible instantons. However, there is only one instanton needed for calculating 

in the system with the biaxial spin Hamiltonian of equation (1) because of the symmetry. In
general, the tunnel splitting  for a biaxial spin molecule can be written as

 = p1e−S1r |1 + p21e−2i�e−Sr | = p1e−S1r ((1 − p21e−Sr )2 + 4p21e−Sr cos2 �)1/2 (3)

where Sr = S2r − S1r and 2� = S2i − S1i . p21 is the ratio of the pre-exponential factor p2

of one path to that of the other, p1. p21 is the one for the symmetric case with Hy = 0.
In the continuous approach, the classical actions of a spin system can be computed by

using the coherent-spin-state path integrals [8]. The imaginary-time propagator for spin S is
given by

〈n̂2| exp[−HT ]|n̂1〉 =
∫

[dn̂] exp[−SE[n̂]] (4)

where the |n̂〉 denote coherent states. The path integral is over paths satisfying | ˆn(−T/2)〉 =
|n̂1〉 and | ˆn(T /2)〉 = |n̂2〉. SE is the Euclidean action which is given by

SE =
∫ T/2

−T/2
iS(1 − cos θ)φ̇(τ ) dτ +

∫ T/2

−T/2
E(θ, φ) dτ (5)

where (θ, φ) are the polar coordinates of n̂, and E(θ, φ) = 〈n̂|H |n̂〉. For large spin, and large
time T , the path integral of equation (4) can be evaluated using instanton or steepest-descent
methods [8, 13].

For the model of equation (1), E(θ, φ) can be obtained easily as shown below:

E(θ, φ) = K1(cos θ − cos θ0)
2 + K2(sin θ sin φ − sin θ0 sin φ0)

2 + E0 (6)

where E0 is a constant that makes E(θ, φ) zero in the initial state, and cos θ0 = Hz/Ha ,
sin θ0 sin φ0 = Hy/λHa , and K1,2 = k1,2S

2. The critical field at which the energy barrier
disappears is as follows:

Hc = λHa

(sin2 θH + λ2 cos2 θH )1/2
(7)

where θH = tan−1(Hy/Hz). For the special cases where θH = 0 and π/2, we have
Hc = Ha and λHa , respectively. There are two energy minima, at (θ, φ) = (θ0, φ0) and
at (θ, φ) = (θ0, π − φ0), which are degenerate, so this corresponds to the ground-state tunnel
splitting which appears below Hc.

Along an instanton, E(θ, φ) is conserved, so the orbit, without regard to its time
dependence, can be found purely by using energy conservation, and it can be expressed
as a complex function of real φ. This point is of great utility in calculating the classical
actions. However, we should note that the orbits are essentially different in the two cases
(h2 + h∗2)/2 � 1 − λ and (h2 + h∗2)/2 > 1 − λ, where

h = hz + ihy = Hz/Ha + iHy/
√
λHa.

For (h2 + h∗2)/2 � 1 − λ, the orbit which corresponds to an instanton solution is found as

cos θ(φ) = h∗ + iλ1/2 sin φV (φ)

1 − λ sin2 φ
(8)
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where V (φ) = v+(φ) + iv−(φ). v±(φ) = ((va(φ)
2 + v2

b)
1/2 ± va(φ))

1/2/
√

2 with va(φ) =
1 − λ sin2 φ − (h2 + h∗2)/2 and vb = i(h∗2 − h2)/2. va(φ) is larger than zero in all of the
real-φ regions. The single orbit becomes multiple orbits as the condition (h2 +h∗2)/2 � 1 −λ

changes into the condition (h2 + h∗2)/2 > 1 − λ under which va(φ) is not always larger than
zero. va(φ) is less than zero in the regions where φc � φ � π − φc and −π + φc � φ � −φc

and still larger than zero in the other regions, where φ is between −π and π . The condition
for φc is

sin φc = λ−1/2
√

1 − (h2 + h∗2)/2. (9)

This is the point at which arg v±(φ) changes from 0, for regions where φ is between −π and π ,
to π/2 in regions where φc � φ � π −φc and to 3π/2 in regions where −π +φc � φ � −φc.

The two classical actions are

S1 = iS
∫
C1(φ0→π−φ0)

(1 − cos θ(φ)) dφ S2 = iS
∫
C2(φ0→−π−φ0)

(1 − cos θ(φ)) dφ.

In both of the integrals, it is no longer necessary to regard φ as running over the original
instanton contour given by φ(τ). The classical actions of the single orbit can be obtained by
integration just along the real axis since there are no singularities of the orbit on the real φ-axis.

Noting that cos θ(φ) and sin φV (φ) are respectively periodic and odd functions of φ, we
find the action difference S = S2 − S1 = Sr + i 2� between the two paths to be

S = −iS
∫ π

−π

(
1 − h∗ + iλ1/2 sin φV (φ)

1 − λ sin2 φ

)
dφ = −i 2πS

(
1 − h∗

√
1 − λ

)
(10)

with

S1r = 2S

(
hy√
1 − λ

(
−π

2
+ tan−1(

√
1 − λ tan φ0)

)
+

∫ π/2

φ0

λ1/2 sin φv+(φ) dφ

1 − λ sin2 φ

)
. (11)

In the strong-field case of (h2 + h∗2)/2 > 1 − λ with φc > φ0, the integral paths
C1(φ0 → π − φ0) and C2(φ0 → −π − φ0) of the single orbit become the integral paths
C1(φ0 → φc → π − φc → π − φ0) and C2(φ0 → −φc → −π + φc → −π − φ0)

of the multiple orbits, in which the arguments of v±(φ) are changed at φ = ±φc and
φ = ±(π − φc), respectively. For φ0 > φc, only C2(φ0 → −π − φ0) is changed to
C2(φ0 → φc → −φc → −π + φc → −π − φc → −π − φ0). Here C1(φ0 → π − φ0)

is not changed; however, the multiple orbits should be used instead of the single orbit to
calculate S. It is as follows:

S = −iS
∫ π

−π

(
1 − h∗

1 − λ sin2 φ

)
dφ + S

∫ −π+φc

−φc

λ1/2 sin φV (φ)

1 − λ sin2 φ
dφ

− S

∫ π−φc

φc

λ1/2 sin φV (φ)

1 − λ sin2 φ
dφ. (12)

Noting the changes of arg v±(φ) in the different regions mentioned above, we have

Sr = 2πS

(
hy√
1 − λ

)
− 4S

∫ π/2

φc

λ1/2 sin φvm−(φ)
1 − λ sin2 φ

dφ (13)

and

2� = −2πS

(
1 − hz√

1 − λ

)
− 4S

∫ π/2

φc

λ1/2 sin φvm+(φ)

1 − λ sin2 φ
dφ (14)

where vm±(φ) = ((vma(φ)
2 + v2

b)
1/2 ± vma(φ))

1/2/
√

2 with vma(φ) = −va(φ) > 0
(arg vma(φ) = 0) in the region where φc � |φ| � π − φc.
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S1r is as follows:

S1r = 2S

(
hy√
1 − λ

(
−π

2
+ tan−1(

√
1 − λ tan φ0)

))
+ Rmr (15)

with

Rmr = θ(φc − φ0) 2S
∫ φc

φ0

λ1/2 sin φv+(φ) dφ

1 − λ sin2 φ
+ 2S

∫ π/2

φm

λ1/2 sin φvm−(φ)
1 − λ sin2 φ

dφ (16)

where θ(φc − φ0) = 1 and φm = φc if φc > φ0, and θ(φc − φ0) = 0 and φm = φ0 if φc � φ0.
The integral in equation (14) represents the effect of the strong field on the quantum phase
difference while the integral in equation (13) and Rmr in equation (15) represent that of the
strong field on the tunnelling rate. It is interesting to note that equations (12) and (15) become
equations (10) and (11) at (h2 + h∗2)/2 = 1 − λ (φc = π/2).

For hz �= 0 with and without hy = 0, the topological tunnelling oscillation exists under the
condition (h2 +h∗2)/2 � 1−λ. It is easy to see the topological oscillation as hz changes, with
hy = 0 [8], where two instanton paths (θ = θ0, φ = φ0 → θ, φ = π/2 → θ = θ0, φ = π−φ0

and θ = θ0, φ = φ0 → θ, φ = −π/2 → θ = θ0, φ = −π − φ0) are equivalent for the
tunnelling rate due to the symmetry (φ0 = 0). As shown in equation (10), the tunnelling is
completely frozen out whenever hz = (1 − λ)1/2(S − n− 1/2)/S where n = 0, 1, 2, . . .. The
oscillation and freezing are due to the spin quantization and the level crossings [8, 14]. The two
instanton paths are not equivalent for the rate due to applying Hy , which makes the symmetry
broken and φ0(hy) non-zero. h becomes complex, and Sr is not equal to zero. Then the
other type of topological oscillation appears, and the non-Kramers freezing is partial. It is
clearly seen from equation (3) with equation (10) that the position and degree of the freezing
are determined by h. The degree of the freezing can be defined as a ratio σ of the oscillation
part 4p21e−Sr to the non-oscillation part (1 − p21e−Sr )2 in equation (3). σ is changed from
∞ (the completely freezing region) to a small value (the unfreezing region)—for example,
0.1—as hy varies from zero to hyc ≈ 0.06(1 − λ)1/2. It is easily seen that the degree of
freezing is very sensitive to hy , i.e., the orientation θH of the magnetic field. The larger hy is,
the less freezing there is. For a spin molecule with medium anisotropy, partial freezing can be
observed in a slightly larger region of hy(θH ). This is why partial freezing can be observed in
Fe8 molecular nanomagnets with λ = 0.71 [6].

To better understand the main picture mentioned above and compare the theoretical
approach with the experimental measurement, the pre-exponential factors in tunnel splitting
are evaluated for small fields, and then 0 = p1e−S1r is found to be

0 = c(λ1/2 cosφ0)
3/2 8 sin5/2 θ0

(sin2 θ0 − λ)1/2

(
K1

πS

)1/2( sin2 θ0

sin2 θ0 + λ cos2 θ0 sin2 φ0

)1/2

e−S1r (17)

where the dimensionless prefactor c can often be of the order of 1 or so. We have plotted
 for the Fe8 spin molecule as a function of the field strength HS (=(H 2

y + H 2
z )

1/2) for
θH = 0◦, 3◦, 5◦, 7◦, 20◦, 50◦, and 90◦ in figure 1. It is interesting to note that the result obtained
from the theoretical approach is in good agreement with the numerical diagonalization of the
Hamiltonian and that both of them reproduce the main picture of the experiment [6]. In figure
1, furthermore, the smallest  is at HS = 0.128, 0.126, 0.109, and 0 T for θH = 0◦, 7◦,
20◦, and 90◦, respectively. This is due to the combination of the oscillation part with the
non-oscillation part and its dissociation, and can be used to explain what was observed for Fe8

molecular nanomagnets, as shown in the figure in reference [6]. However, a fourth-order term
C(S4

+ + S4
−) should be taken into account in order to recover quantitatively the experimental

values of the splitting  [6]. It would be interesting to solve the problem in the continuous-spin
approach.
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Figure 1.  versus HS for θH = 0◦, 3◦, 5◦, 7◦, 20◦, 50◦, and 90◦.

The behaviour of the tunnel splitting  with (h2 + h∗2)/2 > 1 − λ is quite different from
that with (h2 + h∗2)/2 � 1 − λ due to the multiple orbits induced by the strong field. This
is the case of references [11] and [12], as hy = 0 and thus Sr = 0, because hy = 0 and
vm−(φ) = 0 in equation (13). The integral in equation (14) can be calculated as follows:∫ π/2

φc

λ1/2 sin φvm+(φ)

1 − λ sin2 φ
dφ =

∫ π/2

φc

λ1/2 sin φ
√
λ sin2 φ − sin2 θ0

1 − λ sin2 φ
dφ = π

2

(
hz√
1 − λ

− 1

)
.

(18)

2� is also exactly equal to zero because the real part v+(φ) of V (φ) (V (φ) = v+(φ) + iv−(φ)
with arg va(φ) = 0) in the single orbit becomes the imaginary parts vm+(φ) and −vm+(φ) of
V (φ) (V (φ) = i(vm+(φ) + ivm−(φ)) with arg vma(φ) = 0 and V (φ) = −i(vm+(φ) + ivm−(φ))
with arg vma(φ) = 0) in the multiple orbits in the regions where φc � φ � π − φc and
−π + φc � φ � −φc, respectively. In other words, the imaginary-time motion becomes the
real-time motion in the regions between ±φc and ±(π − φc), and then the phase contribution
of the imaginary-time motion is cancelled exactly by that of the real-time motion [11]. From a
physical point of view, this occurs because there is no more level crossing when hz >

√
1 − λ

[8, 12]. It is easily seen that for the case ofhy = 0 (φ0 = 0), S1r = Rmr with θ(φc−φ0) = 1 and
vm−(φ) = 0, and S1r (φc) decreases and then  increases monotonically with increasing hz.

However, Sr and 2� are not exactly equal to zero when (h2 + h∗2)/2 > 1 − λ with
hy �= 0. There is no purely real-time motion in the case of a complex h which makes both
of vm+(φ) and vm−(φ) non-zero. For (h2 + h∗2)/2 > 1 − λ with a fixed argh, both 2� and
Sr approach their limits as |h| increases. The limit values decrease and approach zero as
argh changes from some values allowed by the multiple orbits to zero. We can conclude,
therefore, that under the condition of (h2 + h∗2)/2 > 1 − λ with a fixed argh, the oscillation
of  disappears and then  increases monotonically with |h| and that  is sensitive to argh,
i.e., the field direction in all of the tunnel regions.

In summary, the direction and strength effects of a magnetic field on the ground-state
tunnel splitting for a biaxial spin molecule have been investigated. It is found that for
(h2 + h∗2)/2 � 1 − λ, 2� and Sr are respectively dependent on hz and hy only, and that
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oscillation and freezing of  can occur. The degree of freezing is sensitive to the field direction
and the molecular anisotropy. This is in good agreement with the main picture observed in
the recent experiment on Fe8 molecular nanomagnets. For (h2 + h∗2)/2 > 1 − λ, the single
orbit becomes the corresponding multiple orbits. On the basis of the multiple orbits obtained
exactly, the direction and strength effects are clearly revealed, and are in agreement with those
obtained in the special case of hy = 0 in references [11] and [12]. Finally, it is worth pointing
out that the multiple orbits exist not only in the biaxial spin molecule but also in the other
systems, and that the concept is useful for studying the tunnel problem. The prediction as
regards the behaviour of  in the strong field can be tested for Fe8 molecular nanomagnets
with HG = (1 − λ)1/2Ha = 0.54Ha .
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